O ct 2 00 2 Conformal Invariance in Percolation , Self - Avoiding Walks , and Related Problems ∗

نویسنده

  • John Cardy
چکیده

Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas mappings, and stochastic Loewner evolution. This talk is about ‘geometric’ critical phenomena. These are random spatial processes, where either (1) the probability distribution is determined by equilibrium statistical mechanics, and we ask questions about geometrical properties, or (2) the probability distribution is itself geometrical in nature. The simplest example of (1) is clustering in percolation (see Fig. 1), in which the probability distribution ∗Plenary talk given at the International Conference on Theoretical Physics, Paris, July 2002.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 7 Se p 20 02 Conformal Invariance in Percolation , Self - Avoiding Walks , and Related Problems ∗

Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas ...

متن کامل

Critical exponents, conformal invariance and planar Brownian motion

In this review paper, we first discuss some open problems related to two-dimensional self-avoiding paths and critical percolation. We then review some closely related results (joint work with Greg Lawler and Oded Schramm) on critical exponents for two-dimensional simple random walks, Brownian motions and other conformally invariant random objects.

متن کامل

Critical exponents , conformal invariance and planar Brownian motion 3

In this review paper, we rst discuss some open problems related to two-dimensional self-avoiding paths and critical percolation. We then review some closely related results (joint work with Greg Lawler and Oded Schramm) on critical exponents for two-dimensional simple random walks, Brownian motions and other conformally invariant random objects.

متن کامل

A pr 2 00 3 Random path representation and sharp correlations asymptotics at high - temperatures

We recently introduced a robust approach to the derivation of sharp asymptotic formula for correlation functions of statistical mechanics models in the high-temperature regime. We describe its application to the nonperturbative proof of Ornstein-Zernike asymptotics of 2-point functions for self-avoiding walks, Bernoulli percolation and ferromagnetic Ising models. We then extend the proof, in th...

متن کامل

Walking on fractals: diffusion and self-avoiding walks on percolation clusters

We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002